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Nonuniversality and scaling breakdown in a nonconservative earthquake model

C. J. Boulter and G. Miller
Department of Mathematics, School of Mathematical and Computer Sciences, Scott Russell Building, Heriot-Watt Universit

Edinburgh EH14 4AS, United Kingdom
~Received 4 March 2003; revised manuscript received 16 June 2003; published 11 November 2003!

We use extensive numerical simulations to test recent claims of universality in the nonconservative regime
of the Olami-Feder-Christensen model. By studying larger systems and a wider range of dissipation levels than
previously considered we conclude that there is no evidence of universality in the model with only limited
regions of the event size distributions displaying power-law behavior. We further analyze the dimension of the
largest events in the model,Dmax, using a multiscaling method. This reveals that althoughDmax initially
increases with system size, for larger systems the dimension ultimately decreases with system size casting
further doubt on the criticality of the model.
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I. INTRODUCTION

There has been a lot of interest recently in the theory
self-organized criticality~SOC! @1# which provides one ex-
planation for the wealth of scale invariant behavior obser
in nature. Self-organized criticality was introduced in 19
by Bak, Tang, and Wiesenfeld~BTW! @2# in the context of a
simple sandpile model. One major drawback of the BT
model is that criticality can only be obtained if the syste
variables are conserved@3#. Unfortunately, conservation i
not natural in many physical systems such as earthqu
and landslides, therefore models allowing some dissipa
must be introduced.

There are a number of dissipative or nonconserva
models, with the most studied being the Olami-Fed
Christensen ~OFC! model @4# which is based on the
Burridge-Knopoff spring-block model for earthquakes@5#. In
two dimensions the OFC model is defined on a square la
with L3L sites, where each node (i , j ) is initially assigned
with a random variable or energyui j , in the interval@0,1).
The system is then slowly driven in such a way that
energy at all the sites increases uniformly until one s
reaches the threshold valueuth51. Once the energy on a sit
reaches the threshold value the site is termed supercrit
and the system then undergoes a relaxation process w
energy is redistributed to neighboring sites. The rules
relaxation require the supercritical site to relax according
ui j →0, and its supercritical energy to be redistributed
~typically! four neighbors,unn , using the ruleunn→unn
1aui j . This toppling is repeated until all sites in the syste
are below the threshold value, after which the driving ph
recommences until the next event is triggered. These
pling events are called ‘‘avalanches’’ which can be cons
ered to represent earthquakes, with the sizes of the earth-
quake given by the number of topples in the avalanche.
parametera used in the redistribution rule controls th
amount of energy dissipated in the system. Whena50.25
energy is conserved, but whena,0.25 some energy is los
so the OFC model represents a nonconservative system

The OFC model was originally proposed to display SO
behavior@4#, where one identifies criticality with scale in
variance of the event size distribution so that the critical s
1063-651X/2003/68~5!/056108~6!/$20.00 68 0561
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is characterized by the lack of any typical length scale in
infinite-sized system. For such a critical state one expect
find a power-law distribution of earthquake sizes. OFC
deed found an approximately power-law distribution wh
running simulations on finite lattice sizes, with addition
evidence that finite-size scaling~FSS! was satisfied. The FSS
ansatz for the probability distribution of earthquake sizes i
system of sizeL ~i.e., a lattice ofL3L sites!, PL(s), is

PL~s!;L2bGS s

LDD , ~1.1!

whereG is a suitable scaling function andb andD are criti-
cal exponents describing the scaling of the distribution fu
tion. The ratiot5b/D is the power-law exponent for th
infinite-system size probability distributionP(s);s2t and is
predicted to be dependent ona @4#. In their investigations
OFC found that the exponential cutoff scaled withD.2,
which has since been criticized as physical constraints
quire D<2 for large enough system sizes@6,7#.

Later studies by Grassberger@8#, where larger system
sizes were used in simulations, supported the fact that
OFC model was critical but concluded that FSS is violat
The observation of FSS in earlier studies is believed to
due to the small system sizes considered, although a re
analysis suggests that the probability distribution for eve
starting in the bulk of the system may be compatible with
FSS hypothesis@9#. Further studies examining the branchin
rate in the OFC model have concluded that the system
only truly critical in the conservative casea50.25 with the
model being ‘‘almost critical’’ for large but nonconservativ
choices ofa @10,11#, however these findings remain contr
versial @7,12#.

Recently, Lise and Paczuski~LP! @7# have reanalyzed the
OFC model using a simple multiscaling ansatz. Contrary
earlier studies, they found evidence of universal behav
that is, they found that the slope exponentt is independent of
a ~for a wide range ofa values at least!, with t51.8. Once
again FSS is found to be violated, but for the larger syst
sizes LP considered they foundD<2 is satisfied. By apply-
ing a multiscaling approach they identified the dimension
©2003 The American Physical Society08-1
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the largest avalanche in the system,Dmax, and found evi-
dence thatDmax→2 asL→` for a range of dissipation lev
els. Such results indicate that the nonconservative O
model is critical. In this paper we reexamine the findings
LP considering larger system sizesL, and a wider range ofa
values leading us to different conclusions.

The remainder of this paper is organized as follows.
Sec. II we examine the event size distribution for a range
a values, revealing that there is no evidence for a unive
exponentt. Indeed, fora,0.25 we show that the probabilit
distribution cannot be fit by a single power law in general,
that the systems do not display genuine scale invariance
Sec. III we investigate the claim thatDmax→2 asL increases
and present evidence that althoughDmax initially increases
towards 2, when the system size is sufficiently largeDmax
decreases asL increases. We discuss our results and pres
our conclusions in Sec. IV.

II. NONUNIVERSALITY OF EVENT SIZE DISTRIBUTIONS

Using numerical simulations we have investigated
event size distributions for a wide range of dissipation leve
Following LP we use a multiscaling analysis to assist us
obtaining clearer results. The multiscaling ansatz used for
probability distribution functionPL(s) takes the form

log„PL~s!…

log~L/ l 0!
5FS log~s/s0!

log~L/ l 0! D , ~2.1!

where formallys0 and l 0 are parameters which are chos
to obtain the best data collapse for different system s
@13#. For our study we again follow LP and simplify Eq
~2.1! by choosing s05 l 051. For a given a, if PL(s)
;s2t(a) for some range of event sizes, then log(PL)/log(L)
;2t(a)log(s)/log(L) in that range. This shows that the curv
log(PL)/log(L)1t(a)Dav , where Dav5 log(s)/log(L) is the
‘‘avalanche dimension’’, should converge to a horizon
straight line for sufficiently largeL if the probability distri-
bution is indeed power law@14#. The value oft~a! that gives
the horizontal line is precisely the slope exponent discus
in the Introduction. In this paper we aim to test the predict
that for nonconservative systems the slope exponent tak
universal value of 1.8. Thus we present our data as plot
log(PL)/log(L)11.8Dav versusDav for a range of system
sizes. If the prediction is correct, the curves should conve
to a horizontal line as system size increases, and if the cu
converge to a straight line with a slopep, say, then the origi-
nal data were power law with the asymptotic distributi
P(s);s21.81p so t51.82p. In all of the figures presente
in this section the probability distribution data have be
binned to produce clearer plots and aid in testing the pre
tion of a straight line.

Our results fora50.22 are shown in Fig. 1, which revea
that even for the largest system sizes the data do not fa
a single straight line. For smallDav (0.2<Dav<0.8) the
curves converge to a straight line with nonzero slope~con-
sistent witht'1.70!. In contrast, for largeDav (1.0<Dav
<1.8) the curves reveal a much strongerL dependence with
systems of sizeL,256, clearly much too small to identify
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the asymptotic behavior. For largerL the curves do appear t
be slowly converging to an approximately straight line.
unambiguously determine the slope of this line, systems
size larger thanL51000 would need to be studied, but o
the basis of the available simulation results we can pre
t,1.8 in this region. The failure to converge to a sing
straight line for the full range ofDav indicates thatPL(s) is
not dominated by a single power law, hence the system d
not genuinely display the scale invariance associated w
criticality.

Repeating our analysis for other dissipation levels reve
similar results. For example, in Fig. 2, we plo
log(PL)/log(L)11.8Dav versusDav for a50.16 and a range
of system sizes. Note that the curves cannot be fit by a sin
straight line, again casting doubt on the criticality of th
system. There is evidence that the curves converge to
approximately straight line for smallDav ~corresponding to a
local slope exponentt'1.85!, while for largerDav we again
find strongerL dependence and for thisa less indication of a
straight line fit. We certainly do not believe that there

FIG. 1. Plot of log(PL)/log(L)11.8Dav againstDav for a50.22
and for various system sizes 128<L<1000.

FIG. 2. Plot of log(PL)/log(L)11.8Dav againstDav for a50.16
and the range of system sizes indicated.
8-2
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NONUNIVERSALITY AND SCALING BREAKDOWN IN A . . . PHYSICAL REVIEW E 68, 056108 ~2003!
evidence of the curves converging to a single horizontal
for the full range ofDav on the basis of simulations up t
sizeL51000 @14#, contrary to the claims of LP.

In Fig. 3 we plot log(PL)/log(L)11.8Dav againstDav for
variousa values~several system sizes in each case! to high-
light thea dependence of the probability distributions. In t
conservative case, which is accepted to be critical, we fin
single straight line fit for allDav.0 with t'1.25. In all the
dissipative cases there is clear nonlinear behavior for
system sizes studied, if the prediction of a universal slo
exponent is correct all these curves must become straight
parallel asL is further increased. LP proposed for sm
a~&0.20! that although the distributions decrease from left
right for small system sizes, they will converge to a horizo
tal line as the system size is increased. This assertion hol
some extent for the smaller system sizes considered in
@7#, so asL is increased from 32 to 256 the curves cou
conceivably be converging towards a horizontal line. Ho
ever, this pattern does not continue for the larger sys
sizes we have considered where the curves do not appe
converge towards a horizontal line, as clearly seen for
lower two systems shown in Fig. 3. Fora values in the range
0.18<a<0.22 the deviation from linearity is the smalles
and the curves are nearest to being horizontal. LP con
trated primarily ona values in this range, which may expla
why they concluded thatt was universal witht'1.8. How-
ever, the lines are not straight as seen clearly in Fig. 1,
there is a systematic change with increasinga, indicating an
a dependence in the results, contrary to the proposal of
versality. For largera, close to the conservative limit, ther
is a strongL dependence in the results, implying that lar
systems need to be simulated in order to accurately iden
asymptotic behavior. Our results fora50.24 shown in Fig. 3
suggest that the multiscaled probability distribution functi
approaches a predominantly increasing function from lef

FIG. 3. Plot of log(PL)/log(L)11.8Dav againstDav for various
dissipation levels and a range of system sizes. For each choicea
the largest system size shown is indicated by a solid line. Spe
cally, the system sizes shown areL5500 andL5700 for a50.25,
0.22, and 0.18;L5700 ~dot-dashed line!, L51000, andL51400
for a50.24; L5700 andL51000 fora50.16; andL5256 andL
5500 for a50.13.
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right so that the ‘‘average slope exponent’’ is less than th
1.8 ~i.e., if we try to approximate the curves by a sing
straight line, the slope exponent for that line is less than 1

Thus in conclusion we believe that there is no eviden
for universality of the event size distribution functions. In th
nonconservative regime the data cannot be fit by a sin
straight line so that the systems do not display scale inv
ance. Hence one cannot determine a single-slope exponet.
However, if one looks at the overall shape of the curves
define an average slope exponent,t̄, say, then one findst̄
.1.8 for smalla ~corresponding to curves decreasing fro
left to right in Fig. 3!, t̄'1.8 for a'0.20, andt̄,1.8 for a
close to the conservative limit~corresponding to curves in
creasing from left to right in Fig. 3!. The systematic chang
in t̄ with a, or if one prefers thea dependence of the slope
of log(PL)/log(L), is fully consistent with nonuniversality
We believe that the predictions of universality by LP are d
in part to not considering large enough system sizes, an
part to the large scales used in their figures which m
observing small deviations in slope particularly difficult.

III. THE BEHAVIOR OF Dmax

In this section we address how the dimension of the la
est avalanche,Dmax, varies with system size for a give
choice of dissipation level. Recall, LP proposed thatDmax
→2 asL→` for the range ofa values they considered. In
order to aid our analysis we concentrate on the cumula
distribution function

FL~s!5 (
s8>s

PL~s8! ~3.1!

in this study. Note that ifPL(s);s2t, thenFL(s);s(12t) so
that the slope exponents of the two distributions differ
one, however the largest measured event is the same in
distributions.

The dimension of an earthquake of sizes in a system of
size L is Dav5 log(s)/log(L). The dimension of the larges
avalanche,Dmax, is formally defined as

Dmax5max~Dav!, ~3.2!

where the maximum is taken over a sufficiently large num
of avalanches. In practice, one considers a multiscaling
of log(FL)/log(L) versusDav and identifies an effectiveDmax
as the value ofDav at which log(FL)/log(L) takes some pre-
determined value. This allows a fairer comparison ofDmax
for different system sizes when using finite duration simu
tion studies. An example of such a plot is shown in Fig. 4
the casea50.13. We see thatDmax increases whenL is in-
creased fromL5128 to 256, but upon further increasin
system sizeDmax decreases. This indicates thatDmax does not
simply increase towards 2 asL increases, rather there is
crossover system sizeLmax

X (a) above whichDmax decreases
with increasingL. For a50.13 it is clear from Fig. 4 that
128,Lmax

X (0.13),384. It is known that when one starts t
organize the OFC model from random data there is a sign
cant transient phase before the organized stationary sta

f
fi-
8-3
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C. J. BOULTER AND G. MILLER PHYSICAL REVIEW E68, 056108 ~2003!
reached@8#. During this transient phase the largest event s
may continue to grow until the stationary state is reach
thus one must be careful to ensure that the decrease ofDmax
shown in Fig. 4 is not due to transient effects. In all cases
have run a minimum of 23109 avalanches prior to collecting
data, and checked that subsequent distributions overlay
another. For example, in Fig. 5 we show three consecu
runs of 63109 avalanches forL5256 andL5500 which
clearly demonstrates that the decrease ofDmax is not a tran-
sient effect.

FIG. 4. Multiscaling plot of log(FL)/log(L) against Dav for
a50.13 and various system sizes are indicated. The main
shows the results of quadruple precision simulations, while the i
shows the corresponding results using double precision~for clarity
the L5384 system is not shown in the inset!.

FIG. 5. Multiscaling plot fora50.13 and system sizesL5256
and L5500. In both cases three consecutive batches of 63109

avalanches collected after the organizing phase are shown.
agreement between batches demonstrates that transient effec
not responsible for the observed decrease inDmax.
05610
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In light of recent work some consideration should
given to the effect of the limited floating point precision us
in the simulations. In particular, it has been shown that wh
using finite precision a series of small avalanches may
mistaken for a single larger avalanche, this effect can lea
nonrepresentative behavior for smalla and large enoughL
@15,16#. Throughout our study we have used quadruple p
cision arithmetic which we believe is sufficiently accurate f
the system sizes and dissipation levels considered@17#. The
casea50.13,L5700 is borderline so that we cannot be su
that the result of Fig. 4 would be reproduced for all choic
of initial data, however, this does not affect our conclusi
above. The effect of limited precision is shown in the inset
Fig. 4, in which the study has been repeated using dou
precision arithmetic. Note that forL>500 one finds an ex-
cess of large avalanches and a different prediction for
slope exponent, thus the results of our study are sensitiv
the level of precision used in the simulations, implying th
one should be wary of predictions made on the basis of
precision simulations.

Returning to our analysis ofDmax, we find that the quali-
tative behavior fora50.13 is repeated for other choices
dissipation levels. In Fig. 6 we show the results fora50.16,
here for clarity only the tails of the distributions are plotte
Once againDmax initially increases with system size@until
L5Lmax

X (0.16)] and then decreases, with 500,Lmax
X (0.16)

,1000. In Fig. 7 we show distributions forL5500 andL
51000 at two consecutive periods after the initial organi
tion phase, showing that these results are not due to tran
effects.

In general, we find that asa increasesLmax
X (a) also in-

creases so that large systems need to be simulated in ord
observe this behavior. In their study LP considereda>0.16
and L<512, which explains why they did not observe th
existence ofLmax

X (a). From our investigation~consideringL
<1000) we have explicitly observed this behavior f
a,0.18 and believe that similar results would be found
larger choices ofa,0.25 if sufficiently large system size
could be simulated. However, due to the long transient p
ods required to reach the organized state in large systems@8#,

ot
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are

FIG. 6. Multiscaling plot of log(FL)/log(L) against Dav for
a50.16 and for various system sizes 128<L<1000.
8-4
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NONUNIVERSALITY AND SCALING BREAKDOWN IN A . . . PHYSICAL REVIEW E 68, 056108 ~2003!
coupled with increasing average avalanche sizes whena is
increased, this is computationally prohibitive at present.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have used a multiscaling approach
numerically analyze several features of the OFC model.
two main findings are as follows: first, we find that mul
scaled plots of the event size distribution cannot be fit b
single straight line, except in the conservative casea50.25.
This suggests that the scale invariance associated with
cality is only present in the conservative limit. Furthermo
there is no evidence that one can fit a universal slope ex
nent for these distributions, as is clearly seen in Fig. 3. I
important to recognize that the concept of universality i
very strong one, and if found in the OFC model would be
significant result. Disproving possible universality
infinite-sized systems based on finite-size simulation res
is difficult ~since one can never be fully sure what wou
happen if systems of a magnitude or two larger could
simulated!. However, we provide clear evidence that there

FIG. 7. Multiscaling plot fora50.16 and system sizesL5500
and L51000, confirming that the simulations have been run p
the transient phase. In both cases two consecutive batches
3109 avalanches collected after the organizing phase are show
et
A
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no justification for the claims of universality made in Re
@7#, with the available data strongly suggesting nonunivers
ity. We wish to stress that, provided the dissipation is not
large~restrictinga*0.18 say!, the deviation from linearity in
the probability distributions is relatively small, so that th
OFC model may still be valid for explaining the approx
mately power-law distributions observed over many deca
in physical systems.

Second, for a fixeda we do not find that the dimension o
the largest avalanche (Dmax) increases towards 2 as the sy
tem size is increased, contrary to earlier indications@7#. In-
stead, we believe that there exists a crossover system
Lmax

X (a) such that onceL.Lmax
X (a) the maximum avalanche

dimension decreases asL increases. As explained below, th
behavior, in whichDmax initially increases and then de
creases asL is increased, is fully consistent with the notio
that the OFC model is almost critical@18# rather than truly
critical. Earlier studies have indicated that for fixeda,0.25,
asL is increased the overall system branching rates initially
increases rapidly before leveling off at a limiting values
5s lim(a),1 @10,11#. The initial increase ofDmax as L is
increased is associated with the rapidly increasing branch
rate allowing the possibility of proportionally larger dissipa
ing events. WhenL is further increasedDmax decreases, in-
dicating that the relative size of the largest dissipating eve
with respect to the maximum total force allowed in the sy
tem decreases. This is precisely what one would expect if
system is not critical but is nearly so@with Lmax

X (a) increas-
ing ass lim(a) approaches 1]. It is appropriate to note th
one does not require lim

L→`
Dmax52 for criticality. Provided

Dmax approaches some nonzero limit, one could still ha
criticality with a somewhat reduced dimension for the larg
dissipating event. However, the nonlinearity in the probab
ity distributions combined with the observed decrease
Dmax are all consistent with the hypothesis that the nonc
servative OFC model is not critical.
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