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Nonuniversality and scaling breakdown in a nonconservative earthquake model
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We use extensive numerical simulations to test recent claims of universality in the nonconservative regime
of the Olami-Feder-Christensen model. By studying larger systems and a wider range of dissipation levels than
previously considered we conclude that there is no evidence of universality in the model with only limited
regions of the event size distributions displaying power-law behavior. We further analyze the dimension of the
largest events in the modeD ., Using a multiscaling method. This reveals that altholghy, initially
increases with system size, for larger systems the dimension ultimately decreases with system size casting
further doubt on the criticality of the model.
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[. INTRODUCTION is characterized by the lack of any typical length scale in an
infinite-sized system. For such a critical state one expects to

There has been a lot of interest recently in the theory ofind a power-law distribution of earthquake sizes. OFC in-
self-organized criticalitSOQ [1] which provides one ex- deed found an approximately power-law distribution when
planation for the wealth of scale invariant behavior observedunning simulations on finite lattice sizes, with additional
in nature. Self-organized criticality was introduced in 1987evidence that finite-size scaliff§SS was satisfied. The FSS
by Bak, Tang, and Wiesenfel@®TW) [2] in the context of a ansatz for the probability distribution of earthquake sizes in a
simple sandpile model. One major drawback of the BTWsystem of sizd (i.e., a lattice ofL XL siteg, P (s), is
model is that criticality can only be obtained if the system
variables are conservg®]. Unfortunately, conservation is s
not natural in many physical systems such as earthquakes PL(s)~LﬁG<—D), (1.1
and landslides, therefore models allowing some dissipation L
must be introduced.

There are a number of dissipative or nonconservativavhereG is a suitable scaling function arglandD are criti-
models, with the most studied being the Olami-Feder<cal exponents describing the scaling of the distribution func-
Christensen (OFC) model [4] which is based on the tion. The ratior=8/D is the power-law exponent for the
Burridge-Knopoff spring-block model for earthquaké&s. In infinite-system size probability distributidh(s)~s™ " and is
two dimensions the OFC model is defined on a square latticpredicted to be dependent en[4]. In their investigations
with LX L sites, where each nodg,|) is initially assigned OFC found that the exponential cutoff scaled wid>2,
with a random variable or energy; , in the interval[0,1).  which has since been criticized as physical constraints re-
The system is then slowly driven in such a way that thequire D<2 for large enough system sizg&7].
energy at all the sites increases uniformly until one site Later studies by Grassbergg8], where larger system
reaches the threshold valug,=1. Once the energy on a site sizes were used in simulations, supported the fact that the
reaches the threshold value the site is termed supercriticaDFC model was critical but concluded that FSS is violated.
and the system then undergoes a relaxation process whef@e observation of FSS in earlier studies is believed to be
energy is redistributed to neighboring sites. The rules foidue to the small system sizes considered, although a recent
relaxation require the supercritical site to relax according taanalysis suggests that the probability distribution for events
u;—0, and its supercritical energy to be redistributed tostarting in the bulk of the system may be compatible with the
(typically) four neighbors,u,,, using the ruleu,,—u,, FSS hypothesifd]. Further studies examining the branching
+ au;; . This toppling is repeated until all sites in the systemrate in the OFC model have concluded that the system is
are below the threshold value, after which the driving phasenly truly critical in the conservative cage=0.25 with the
recommences until the next event is triggered. These topmodel being “almost critical” for large but nonconservative
pling events are called “avalanches” which can be consid-choices ofa [10,11], however these findings remain contro-
ered to represent earthquakes, with the sizd the earth- versial[7,12].
quake given by the number of topples in the avalanche. The Recently, Lise and PaczusiiP) [7] have reanalyzed the
parametera used in the redistribution rule controls the OFC model using a simple multiscaling ansatz. Contrary to
amount of energy dissipated in the system. When0.25  earlier studies, they found evidence of universal behavior,
energy is conserved, but when<0.25 some energy is lost thatis, they found that the slope exponeid independent of
so the OFC model represents a nonconservative system. « (for a wide range otr values at leagt with 7=1.8. Once

The OFC model was originally proposed to display SOCagain FSS is found to be violated, but for the larger system
behavior[4], where one identifies criticality with scale in- sizes LP considered they fouliti<2 is satisfied. By apply-
variance of the event size distribution so that the critical staténg a multiscaling approach they identified the dimension of
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the largest avalanche in the systeb,,,, and found evi- 0.2
dence thaD,,,x—2 asL—o for a range of dissipation lev-

els. Such results indicate that the nonconservative OFC »
model is critical. In this paper we reexamine the findings of 2
LP considering larger system sizesand a wider range af
values leading us to different conclusions.

The remainder of this paper is organized as follows. In
Sec. Il we examine the event size distribution for a range of
a values, revealing that there is no evidence for a universal =
exponentr. Indeed, fora<<0.25 we show that the probability
distribution cannot be fit by a single power law in general, so
that the systems do not display genuine scale invariance. In~

log(L)+1.8 N

-

a

~
(=]
(=]

Sec. lll we investigate the claim thBX,,—2 asL increases --- L=700

and present evidence that althouDh,,, initially increases 08— £=1000 . . !
towards 2, when the system size is sufficiently laRjg., 0 05 o 1.5 2
decreases ds increases. We discuss our results and present av

our conclusions in Sec. V. FIG. 1. Plot of logP,)/log(L)+1.8D,, againstD,, for «=0.22

and for various system sizes 128 <1000.
II. NONUNIVERSALITY OF EVENT SIZE DISTRIBUTIONS

Using numerical simulations we have investigated theN€ @symptotic behavior. For largetthe curves do appear to
event size distributions for a wide range of dissipation levelsP€ Slowly converging to an approximately straight line. To

Following LP we use a multiscaling analysis to assist us iftnambiguously determine the slope of this line, systems of
obtaining clearer results. The multiscaling ansatz used for théize larger thar.=1000 would need to be studied, but on

probability distribution functiorP, (s) takes the form the basis of the available simulation results we can predict
7<1.8 in this region. The failure to converge to a single
log(P,(s)) log(s/so) straight line for the full range db,, indicates thaP, (s) is
o = ) 2.9 not dominated by a single power law, hence the system does
g(L/1g) log(L/lg)

not genuinely display the scale invariance associated with

where formallys, andl, are parameters which are chosencr'tlg:a“ty't. Ivsis for other dissipation level |
to obtain the best data collapse for different system sizes. epeating our analysis for otner dissipation Ievels reveals

: I ilar results. For example, in Fig. 2, we plot
[13]. For our study we again follow LP and simplify Eq. sim
(2.1) by choosings,=l,=1. For a givena, if P,(s) log(P)/log(L)+1.8D,, versusD,, for «=0.16 and a range
o7 for some raongeoof event sizes, thenylg(loa(L) of system sizes. Note that the curves cannot be fit by a single

~~ Ha)log()log(L) in that range. This shows that the curve straight line, again casting doubt on the criticality of the

_ : system. There is evidence that the curves converge to an
log(P)/log(L)+H«)D,,, where D,,=log(s)/log(L) is the : . ; )
“a%;lg)ncr?é )dir;(en)sigvn", should acvonvgr(gé tg(az hc)rizomalapproxmately straight line for smdll,, (corresponding to a

straight line for sufficiently largé. if the probability distri- local slope exponent~1.89), while for largerD,, we again

bution is indeed power lafd4]. The value ofr(a) that gives find_stron_gerl_ _dependencg and for th&sles§ indication of a _
the horizontal line is precisely the slope exponent discusseatralght line fit. We certainly do not believe that there is
in the Introduction. In this paper we aim to test the prediction
that for nonconservative systems the slope exponent takes ¢
universal value of 1.8. Thus we present our data as plots of
log(P)/log(L)+1.8D,, versusD,, for a range of system z
sizes. If the prediction is correct, the curves should converge©
to a horizontal line as system size increases, and if the curves-
converge to a straight line with a slopesay, then the origi-
nal data were power law with the asymptotic distribution
P(s)~s 18P so r=1.8—p. In all of the figures presented

in this section the probability distribution data have been
binned to produce clearer plots and aid in testing the predic-

log (P )/log (L} +

. . . —1 [ 1= L=128 1y
tion of a straight ine. =& |l L=256 i
Our results fore=0.22 are shown in Fig. 1, which reveals —1.2} — L=500 !
that even for the largest system sizes the data do not fall on === L=700 :
. . - — L=1000 1y
a single straight line. For smal,, (0.2<D,,<0.8) the 5 o5 : 5 =

curves converge to a straight line with nonzero slopen-
sistent with7=1.70. In contrast, for largeD,, (1.0<D,,
=<1.8) the curves reveal a much strongedependence with FIG. 2. Plot of logP,)/log(L)+1.8D,, againstD,, for =0.16
systems of sizé. <256, clearly much too small to identify and the range of system sizes indicated.

av
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right so that the “average slope exponent” is less than than
1.8 (i.e., if we try to approximate the curves by a single
straight line, the slope exponent for that line is less than 1.8).
Thus in conclusion we believe that there is no evidence
for universality of the event size distribution functions. In the
nonconservative regime the data cannot be fit by a single
straight line so that the systems do not display scale invari-
ance. Hence one cannot determine a single-slope expenent
However, if one looks at the overall shape of the curves to
define an average slope exponent,say, then one finds
>1.8 for smalla (corresponding to curves decreasing from
left to right in Fig. 3, 7=~ 1.8 for a~0.20, andr<1.8 for «
close to the conservative limitorresponding to curves in-
! . . creasing from left to right in Fig.)3 The systematic change
0 0.5 D1 1.5 2 in 7 with «, or if one prefers ther dependence of the slopes
av of log(P,)/log(L), is fully consistent with nonuniversality.
FIG. 3. Plot of logP,)/log(L)+1.8D,, againstD,, for various e believe that the predictions of universality by LP are due
dissipation levels and a range of system sizes. For each choige ofiN part to not considering large enough system sizes, and in
the largest system size shown is indicated by a solid line. Specifiart to the large scales used in their figures which make
cally, the system sizes shown dre=500 andL =700 fora=0.25,  observing small deviations in slope particularly difficult.
0.22, and 0.18L. =700 (dot-dashed ling L=1000, andL =1400
for «=0.24;L=700 andL=1000 for =0.16; andL =256 andL lll. THE BEHAVIOR OF D
=500 for =0.13.

av

Iog(PL)/Iog(L)+1.SD

In this section we address how the dimension of the larg-

evidence of the curves converging to a single horizontal lin€St @valancheD 5, varies with system size for a given
for the full range ofD,, on the basis of simulations up to Choice of dissipation level. Recall, LP proposed tBa.y
sizeL =1000[14], contrary to the claims of LP. —2 asL— for the range ofa values they considered. In

In Fig. 3 we plot logP,)/log(L)+1.8D,, againstD,, for order to aid our analysis we concentrate on the cumulative
. * U U

variousa values(several system sizes in each damehigh-  distribution function

light the & dependence of the probability distributions. In the

cpnservatiye case, yvhich is accepteq to be critical, we find a FL(s)= >, P.(s) (3.1
single straight line fit for alD,,>0 with 7=1.25. In all the s'=s

dissipative cases there is clear nonlinear behavior for the

system sizes studied, if the prediction of a universal slopdn this study. Note that iP, (s)~s~", thenF (s)~s*~"7 so
exponent is correct all these curves must become straight artiat the slope exponents of the two distributions differ by
parallel asL is further increased. LP proposed for small 0ne, however the largest measured event is the same in both
«(<0.20 that although the distributions decrease from left todistributions.

right for small system sizes, they will converge to a horizon-  The dimension of an earthquake of seé a system of

tal line as the system size is increased. This assertion holds f2€ L is D4, =log(s)/log(L). The dimension of the largest
some extent for the smaller system sizes considered in Refvalanchep ., is formally defined as

[7], so asL is increased from 32 to 256 the curves could

conceivably be converging towards a horizontal line. How- Dmax=maxDa,), (3.2
ever, this pattern does not continue for the larger system ) ) o

sizes we have considered where the curves do not appear §1ere the maximum is taken over a sufficiently large number
converge towards a horizontal line, as clearly seen for th&f avalanches. In practice, one considers a multiscaling plot
lower two systems shown in Fig. 3. Farvalues in the range  ©f 10g(F)/log(L) versusD,, and identifies an effectivl may
0.18<a<0.22 the deviation from linearity is the smallest, @s the value oD,, at which log€,)/log(L) takes some pre-
and the curves are nearest to being horizontal. LP concerfletermined value. This allows a fairer comparisonDgfay
trated primarily one values in this range, which may explain for different system sizes when using finite duration simula-
why they concluded that was universal withr~1.8. How- tion studies. An example of such a plot is shown in Fig. 4 for
ever, the lines are not straight as seen clearly in Fig. 1, anthe casex=0.13. We see thaD , increases whet is in-
there is a systematic change with increasingndicating an ~ creased fromL =128 to 256, but upon further increasing
« dependence in the results, contrary to the proposal of unsystem sizé . decreases. This indicates g, does not
versality. For largem, close to the conservative limit, there simply increase towards 2 dsincreases, rather there is a
is a strongL dependence in the results, implying that largecrossover system size () above whichD ., decreases
systems need to be simulated in order to accurately identifyvith increasingL. For «=0.13 it is clear from Fig. 4 that
asymptotic behavior. Our results far=0.24 shown in Fig. 3 128< L’,T(]a>g(0.13)< 384. It is known that when one starts to
suggest that the multiscaled probability distribution functionorganize the OFC model from random data there is a signifi-
approaches a predominantly increasing function from left tacant transient phase before the organized stationary state is
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45 0 0.5 1 1.5 2 . ! FIG. 6. Multiscaling plot of logk,)/log(L) againstD,, for
0 0.5 D1 15 2 a=0.16 and for various system sizes ¥48<1000.

a In light of recent work some consideration should be

given to the effect of the limited floating point precision used

FIG. 4. Multiscaling plot of logf,)/log(L) againstD,, for ; . . . .
#=0.13 and various system sizes are indicated. The main plol" the simulations. In particular, it has been shown that when

shows the results of quadruple precision simulations, while the insét>'N9 finite precision a series of small avalanches may be

shows the corresponding results using double precidamclarity mistaken for a single larger avalanche, this effect can lead to

the L =384 system is not shown in the inset nonrepresentative behavior for smalland large enough
[15,16. Throughout our study we have used quadruple pre-

. . . ._ cision arithmetic which we believe is sufficiently accurate for
reached8]. During this transient phase the largest event Sz o system sizes and dissipation levels considgt@ll The

may continue to grow until the stationary state is reaChedCasea=0.13 L =700 is borderline so that we cannot be sure
thus one must be careful to ensure that the decreabg,of that the result of Fig. 4 would be reproduced for all choices

ihswrr] Irr: Flr%i:irlr? r;r?t (:uxeltggtr?/nlsﬁntheﬁecr'gs.rltn al I(I:ast?ns W&t initial data, however, this does not affect our conclusion
averuna um o avalanches priorto Collecting 5,56 The effect of limited precision is shown in the inset of

data, and checked that_sub_sequent distributions overlay .Oriﬁg. 4, in which the study has been repeated using double
another. For example, in Fig. 5 we show three Cons.ecu“v%recision arithmetic. Note that fdr=500 one finds an ex-
runs of 6<10° avalanches fol. =256 andL_=500 which cess of large avalanches and a different prediction for the
c!early demonstrates that the decreas®gx is not a tran- slope exponent, thus the results of our study are sensitive to
sient effect. the level of precision used in the simulations, implying that
one should be wary of predictions made on the basis of low

0 y " T " precision simulations.
_0sl .Returning.to our analysi; @ ., We find that the quali—
tative behavior fora=0.13 is repeated for other choices of
-1t . dissipation levels. In Fig. 6 we show the results 6+0.16,
" here for clarity only the tails of the distributions are plotted.
§ -1.5¢ Once againD ,,,, initially increases with system siZantil
= o < ] L=L),{0.16)] and then decreases, with 500,(0.16)
w <1000. In Fig. 7 we show distributions fdr=500 andL
o —25r T =1000 at two consecutive periods after the initial organiza-
2 al \ ] tion phase, showing that these results are not due to transient
- L =500 \ WL = 256 effects.
--- 1%batch i - : X -
-35F ) In general, we find that a& increased ,,(a) also in-
) 2,d batch 1 creases so that large systems need to be simulated in order to
-4p_—— 8 batch observe this behavior. In their study LP considete=l0.16

0 0.5 s 1.5 2 and L=<512, which explains why they did not observe the
a existence ol (@). From our investigatioriconsideringlL
FIG. 5. Multiscaling plot fora=0.13 and system sizas=256 ~ =1000) we have explicitly observed this behavior for
and L=500. In both cases three consecutive batches %@ «<0.18 and believe that similar results would be found for
avalanches collected after the organizing phase are shown. THarger choices oln<<0.25 if sufficiently large system sizes
agreement between batches demonstrates that transient effects amuld be simulated. However, due to the long transient peri-
not responsible for the observed decreasP jpy. ods required to reach the organized state in large syqi@ms
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-1.5 T T T T no justification for the claims of universality made in Ref.
[7], with the available data strongly suggesting nonuniversal-
ity. We wish to stress that, provided the dissipation is not too
large(restrictinga=0.18 say, the deviation from linearity in

the probability distributions is relatively small, so that the
OFC model may still be valid for explaining the approxi-
mately power-law distributions observed over many decades
in physical systems.

Second, for a fixed we do not find that the dimension of
the largest avalanché(,,, increases towards 2 as the sys-
tem size is increased, contrary to earlier indicatipfs In-
stead, we believe that there exists a crossover system size

Iog(FL)/Iog(L)

o 1:‘dbatch LX (@) such that oncé >LX_(a) the maximum avalanche

I 27" batch , , . dimension decreases Bsncreases. As explained below, this
?.6 1.7 1.8 1.8 2 behavior, in whichD,,, initially increases and then de-
Dy creases ak is increased, is fully consistent with the notion

that the OFC model is almost criticgl8] rather than truly

critical. Earlier studies have indicated that for fixee 0.25,
S%ZsL is increased the overall system branching eateitially
iNcreases rapidly before leveling off at a limiting value
=0jim(@)<1 [10,11. The initial increase 0D, asL is
coupled with increasing average avalanche sizes whén increased is associated with the rapidly increasing branching

increased, this is computationally prohibitive at present. rate allowing the possibility of proportionally larger dissipat-
ing events. Wher is further increase® ., decreases, in-

dicating that the relative size of the largest dissipating events
with respect to the maximum total force allowed in the sys-
In this paper we have used a multiscaling approach tdem decreases. This is precisely what one would expect if the
numerically analyze several features of the OFC model. Ousystem is not critical but is nearly $with L,,(c) increas-
two main findings are as follows: first, we find that multi- ing asoy,(«) approaches 1]. It is appropriate to note that
scaled plots of the event size distribution cannot be fit by @ne does not require lim D =2 for criticality. Provided
single straight line, except in the conservative cas®.25.  p__ approaches some nonzero limit, one could still have
This suggests that the scale invariance associated with critgriticality with a somewhat reduced dimension for the largest
Ca“ty is Only present in the conservative limit. Furthermore,dissipaﬂng event. However, the non”nearity in the probab”-
there is no evidence that one can fit a universal slope expgty distributions combined with the observed decrease of

!’]ent for these diStripUtionS, as is Clearly seen .in F|g3 |t iq:)max are all consistent with the hypothesis that the noncon-
important to recognize that the concept of universality is aservative OFC model is not critical.

very strong one, and if found in the OFC model would be a

significant result. Disproving possible universality in

!nf|n_|t§-5|zed_systems based on finite-size simulation results ACKNOWLEDGMENT

is difficult (since one can never be fully sure what would

happen if systems of a magnitude or two larger could be This research was supported in part by The Royal Society,
simulated. However, we provide clear evidence that there isUK.

FIG. 7. Multiscaling plot fore=0.16 and system sizds=500
and L=1000, confirming that the simulations have been run pa
the transient phase. In both cases two consecutive batches of
X 10° avalanches collected after the organizing phase are shown.
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